ETME 3210 Maintenance of Mechatronics Systems

Introduction to Materials in Maintenance and Destructive Testing of Materials

Dr. Khalid Tantawi

Department of Engineering Management and Technology University of Tennessee at Chattanooga

Email: <u>khalid-tantawi@utc.edu</u>

Types of Materials

- There are four main types of materials:
 - **Metals:** have a crystalline structure, can be pure or in alloy form, can be ferrous or non-ferrous.
 - **Polymers:** long chains or networks of molecules usually non-crystalline, usually have organic content. Examples: plastics and elastomers
 - Ceramics: inorganic, chemically bonded metals and nonmetals. Usually brittle, high strength with and light weight. Examples: alumina, silicon carbide, and silicon nitride
 - **Composites:** the integration of two or more materials together (not mixed), one material is a filler (reinforcement), the other is a matrix (resin) material. Can have very high strengths with very low densities. Example: carbon fibers in epoxy matrix.

Why study material properties?

Heydar Aliyev Cultural Center in Azerbaijan,

Source: www.architectmagazine.com

Gateway Arch in St. Louis

Source: Wimimedia Commons

Beluga aircraft

Source:

Wikimedia Commons

Burj Khalifa, Dubai, UAE

Source: Wimimedia Commons

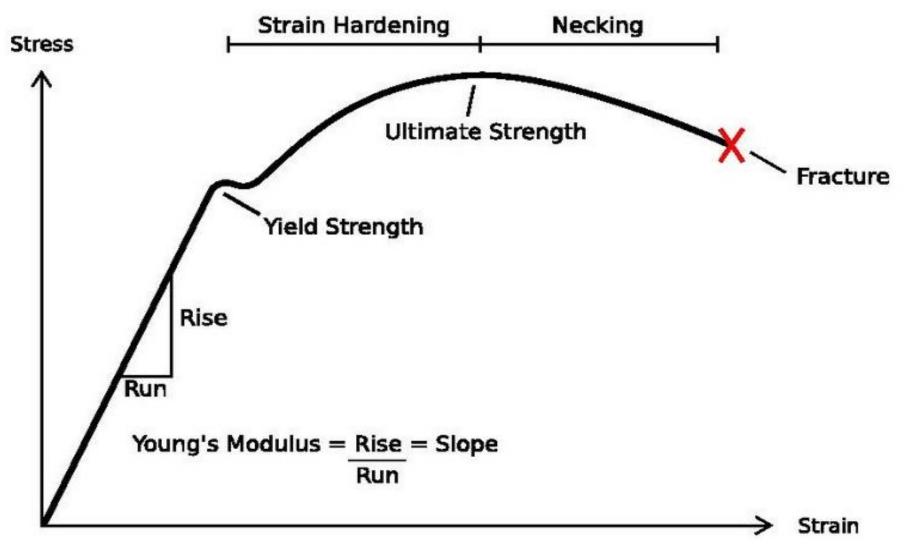
Examples of Structural Failures

Collapse of Ponte Morandi in 08/2018 due to corrosion in steel cables.

Source:

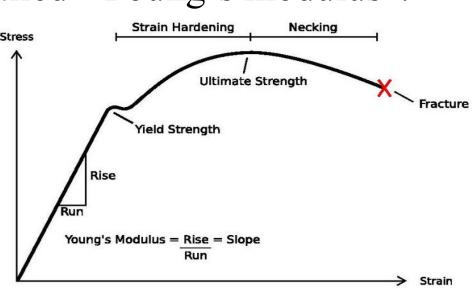
www.ilfattoquotidiano.it

Hartford stadium collapse, 1971


Source: Daily Mail, published April 24, 2014

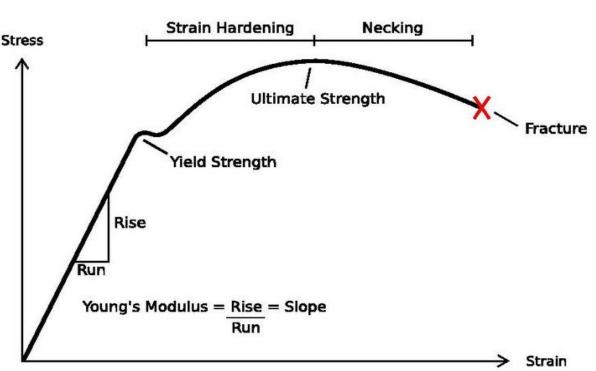
Source: The Structural Engineer, Aug 2015.

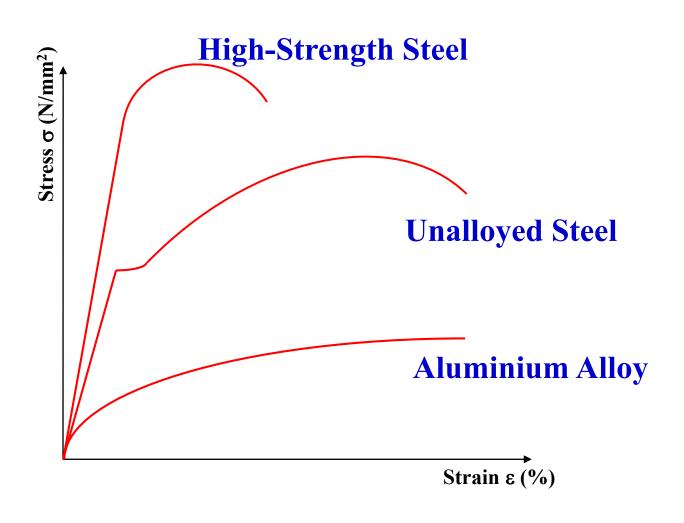
- Stress: the force applied over a unit area.
- When materials are subjected to a stress, say a tensile stress, they exhibit a linear elongation up to a certain point.
- The linear elongation is accompanied by thinning of the cross section.
- Strain: a measure of the elongation of a material
- Ultimate strength: the peak of the stress-strain curve, after which the cross section becomes very thin, and fracture occurs afterwards.



- Elastic Limit: the point below which the material elongation is considered elastic, i.e. the material retains its original shape after stress is gone.
- Tensile Modulus of elasticity (E): the slope of the line in the elastic region. When the stress is tensile, the modulus of elasticity is called "Young's modulus".

$$extbf{E} = rac{Stress}{Strain} = rac{\sigma}{\epsilon}$$

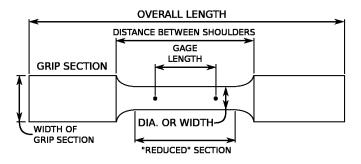

Tensile stress vs. strain test:


- Shear Modulus of Elasticity (G): this is the modulus when the material is subjected to a shear stress.
- Poisson's Ratio: the ratio between the shortening strain and the tensile strain.

$$G = \frac{E}{2(1+\nu)}$$

Stress Vs Strain for Steel

Tensile Tests

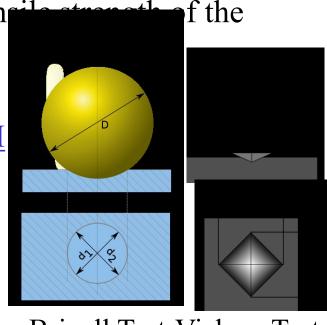

https://www.youtube.com/watch?v=67fSwIjYJ-E

Cast Iron tensile test

Aluminum tensile test

Polymer tensile test

Material	Yield strength (MPa)	Ultimate tensile strength (MPa)	Density (g/cm³)
Steel, structural ASTM A36 steel	250	400-550	7.8
Steel, 1090 mild	247	841	7.58
Human skin	15	20	2
Aluminium alloy 6061-T6	241	300	2.7
Copper	70	220	8.92
Brass	200 +	550	8.73
Tungsten	941	1510	19.25
Glass		33	2.53

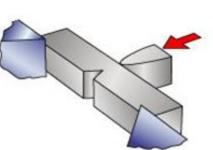


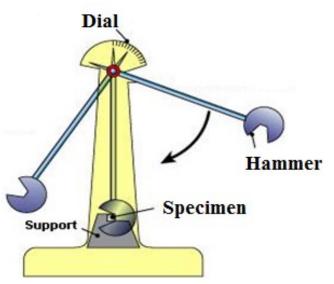
Hardness of a Material

- **Hardness:** Resistance of a material to indentation by a penetrating object.
- Common hardness tests:
 - Brinnell Hardness Test
 - Rockwell Hardness Test
 - Vickers Hardness Test

• Hardness numbers are proportional to the tensile at an attended and material.

https://www.youtube.com/watch?v=RJXJpeH
78iU


Brinell Test Vickers Test



Toughness and Impact Loads

- **Impact Load**: an external load that is applied to a structure for a time duration that does not exceed one third of the structure's natural time period. Otherwise, it is called a **static load**.
- Toughness of Materials: ability of the material to absorb energy before fracture.
- One test that is used to measure impact strength is the Charpy Test.
- This test can be used to indicate the brittleness of materials
- https://www.youtube.com/watch?v=tpGhqQvftAo
- Vehicle bodies are made to be tough but not very strong to protect lives: https://www.youtube.com/watch?v=xtxd27jlZg

Creep in Materials

- The progressive elongation that results due to a constant high load for a long period of time.
- The load does not have to exceed the yield strength at the normal operating temperature of the material for creep to happen.
- Creep should be considered for loads operating at high temperatures. The yield strength of materials drops as temperature increases.
- Creep experiment:
- https://www.youtube.com/watch?v=kcEej2oj6sA

Fatigue

- Fatigue: a cyclic load that changes with time.
- The fatigue load can be higher than the yield impact energy
- Fatigue strength or endurance strength.
- Fatigue Tests:
- https://www.youtube.com/watch?v=LhUclxBUV E

Fatigue fracture surface
Source: Wikimedia Commons

Fatigue fracture
Source: Wikimedia Commons

Summary of Mechanical Properties of Materials

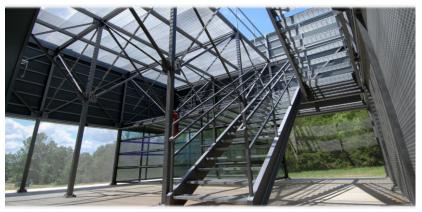
- Young's modulus of elasticity (Stiffness)
- Poisson's ratio of the material
- Yield strength
- Ultimate tensile strength
- Elasticity and Plasticity
- Toughness
- Ductility and brittleness
- Hardness
- Creep
- Fatigue strength

Physical Properties of Materials

- Physical properties
 - Density: mass/volume
 - Coefficient of thermal expansion: the ratio of the change in length to the change in temperature.
 - Thermal conductivity
 - Electrical resistivity

Summary of Destructive Tests

- All the material property tests that were shown in these slides result in the destruction of the integrity of the structure of the specimen being tested. In summary we saw:
 - Tensile Stress-Strain test
 - Hardness tests: (Brinnel, Rockwell, and Vickers tests)
 - Impact test (Charpy test)
 - Crash tests
 - Creep test
 - Fatigue test


Metals and Alloys

- Metals for Commercially Available Shapes
 - I-beam shapes
 - Hollow tubing: round, pipe, square, rectangular

Metals in Manufacturing

- Some of the most commonly used metals include:
- Steel
- Aluminum
- Copper and Copper alloys:
 - Copper: very good conductor, used in wires, rarely used in manufacturing. Why?
 - Brass: An alloy of copper and zinc, has excellent corrosion resistance.
 - Bronze: good strength and excellent corrosion resistance.

Carbon and Alloy Steel

- Steel
 - Used for machine elements; high strength, high stiffness, durability, relative ease of fabrication
 - Alloy of iron, carbon, manganese, one or more significant elements
 - Designation systems for steels managed by SAE International or ASTM International

T	ABLE	2–8 Alloy Groups in the SAE Numbering System	
10)xx	Plain carbon steel: No significant alloying element except carbon and manganese; less than 1.0% manganese. Also called <i>nonresulfurized</i> .	
11	Lxx	Free-cutting steel: Resulfurized. Sulfur content (typically 0.10%) improves machinability.	
12	2xx	Free-cutting steel: Resulfurized and rephosphorized. Presence of increased sulfur and phosphorus improves machinability and surface finish.	
12	2Lxx	Free-cutting steel: Lead added to 12xx steel further improves machinability.	
13	Зхх	Manganese steel: Nonresulfurized. Presence of approximately 1.75% manganese increases hardenability.	
15	бхх	Carbon steel: Nonresulfurized; greater than 1.0% manganese.	
23	Зхх	Nickel steel: Nominally 3.5% nickel.	
25	бхх	Nickel steel: Nominally 5.0% nickel.	
31	Lxx	Nickel-chromium steel: Nominally 1.25% Ni; 0.65% Cr.	
33	Зхх	Nickel-chromium steel: Nominally 3.5% Ni; 1.5% Cr.	
40	Эхх	Molybdenum steel: 0.25% Mo.	
41	.xx	Chromium-molybdenum steel: 0.95% Cr; 0.2% Mo.	
43	Sxx	Nickel-chromium-molybdenum steel: 1.8% Ni; 0.5% or 0.8% Cr; 0.25% Mo.	
44	xx	Molybdenum steel: 0.5% Mo.	
46	бхх	Nickel-molybdenum steel: 1.8% Ni; 0.25% Mo.	
48	Bxx	Nickel-molybdenum steel: 3.5% Ni; 0.25% Mo.	
5x	xx	Chromium steel: 0.4% Cr.	
51	.xx	Chromium steel: Nominally 0.8% Cr.	
51	100	Chromium steel: Nominally 1.0% Cr; bearing steel, 1.0% C.	
52	2100	Chromium steel: Nominally 1.45% Cr; bearing steel, 1.0% C.	
61	.xx	Chromium-vanadium steel: 0.50-1.10% Cr; 0.15% V.	
86	ixx	Nickel-chromium-molybdenum steel: 0.55% Ni; 0.5% Cr; 0.20% Mo.	
87	'xx	Nickel-chromium-molybdenum steel: 0.55% Ni; 0.5% Cr; 0.25% Mo.	
92	2xx	Silicon steel: 2.0% silicon.	
93	Bxx	Nickel-chromium-molybdenum steel: 3.25% Ni; 1.2% Cr; 0.12% Mo.	

Carbon and Alloy Steel

- Steel Classes
 - Low carbon steel: Carbon < 0.30%
 - Medium carbon steel: Carbon ~ 0.30-0.50%
 - High carbon steel: 0.50 0.95%
 - Bearing steel: Carbon > 1.0 %
- Alloy Groups:
 - Sulfur, phosphorus: improve machinability.
 - Nickel: improves ductility and corrosion resistance.
 - Chromium: improves hardenability, wear abrasion resistance.

SAE Designations for Steel

SAE XXXX

Carbon content in hundredths of a percentage point

Alloy group and Major alloying element

Conditions for Steels and Heat Treatment

- Heat Treating
 - Annealing
 - Normalizing
 - Through-hardening and quenching and tempering
 - Case hardening

Types of Steels

• Stainless Steel

- High level of corrosion resistance; alloy chromium content of at least 10%
- The stainless steel series' are 100 to 600
- The 304 and 316 families are the most common, non (or mildly)-magnetic, highly resistant to corrosion.
- The 300 series has austenitic structure high content of chrome and nickel
- The 400 series is magnetic and have ferritic and martensitic structure.

Question

- How to distinguish between galvanized steel, stainless steel, and aluminum?
 - The magnet test: if the magnet sticks to the metal then it is certainly not aluminum. (but it can be steel or of some grades of stainless steel)
 - The density test: steel is three times as dense as aluminum. If the object feels light, it is aluminum.
 - The rust test: Rust can develop on stainless steel at edges and corners, but rust never develops on aluminum.
 - The scratch test: Aluminum is not as hard as steel. It is a lot easier to scratch aluminum and the zinc coating layer than to scratch stainless steel. (this test is not recommended)

Types of Steels

- Structural Steel
 - Low-carbon, hot-rolled steel, very ductile to absorb energy and stand earthquackes.
- Tool Steels
 - Used for cutting tools, punches, dies, shearing blades, chisels, similar uses
- Cast Iron
 - High strength in compression, generally brittle.
 Large gears, machine structures, brackets, linkage parts, important machine parts.

Aluminum

- Aluminum
 - Light weight, good corrosion resistance, relative ease of forming and machining, pleasing appearance

Polymers

- Polymers are macromolecules that consist of a large number of molecules bonded together (poly molecules).
- Examples include:
 - Wood
 - Plastic
 - Waxes

Ceramics

- Inorganic, chemically bonded metals and nonmetals. Ceramics are known for their brittleness and light weight.
- Examples:
 - Porcelain
 - Glasses
 - Clay

Composite Materials

- Composites
 - Materials having two or more constituents blended in such a way that results in bonding between the materials
 - Examples: Reinforced concrete, carbon fibers, and plywood.

TABLE 2-16	2-16 Examples of Composite Materials and their Uses		
Type of composite	Typical applications		
Glass/epoxy	Automotive and aircraft parts, tanks, sporting goods, printed wiring boards		
Boron/epoxy	Aircraft structures and stabilizers, sporting goods		
Graphite/epoxy	Aircraft and spacecraft structures, sporting goods, agricultural equipment, material handling devices, medical devices		
Aramid/epoxy	Filament-wound pressure vessels, aerospace structures and equipment, protective clothing, automotive components		
Glass/polyester	Sheet-molding compound (SMC), body panels for trucks and cars, large housings		

Composite Materials

- Composites
 - Polymer Matrix Composites (PMC)
 - Metal Matrix Composites (MMC)
 - Ceramic Matrix Composites (CMC)