Engineering Design Case Studies

1. Counter weights are commonly used in different applications such as robots and cranes. In the robotic arm below, what is the torque that is needed by the motor to balance the 10 lb load? (2 pts)

Applications of counter weights in the design of mechanical systems

2. Design of a Belt Power Drive System

Design a belt drive system for the following application:

The belt drive will be used in a textile machinery, powered by a NEMA design B induction motor of 50 hp and operating 12 hours per day. The motor has a full-load speed of 1750 rpm . The output sheave should have a speed of about $1,000 \mathrm{rpm}$. Use the charts on pages 3 and 4.

Step 1. Find the recommended service factor for this application:
Motor service factor $=$ \qquad
Step 2. Calculate the design Power.
Design Power $=$ \qquad
Step 3. Select the belt section from the BesTorq belt chart shown in Figure 1 for the given input speed.
Recommended Belt section : \qquad
Step 4. Calculate the speed ratio of the belt drive
Speed Ratio $=$ \qquad
Step 5. Calculate the diameter of the driving sheave that would result in the recommended belt speed of 4000 $\mathrm{ft} / \mathrm{min}$:

Belt speed $=4000 \mathrm{ft} / \mathrm{min}=0.262 \times \mathrm{D}[\mathrm{inch}] \times \mathrm{rpm}$
$\operatorname{Din}=$ \qquad Closest standard diameter $=$ \qquad (find from chart)

Step 6. Calculate the diameter of the driven sheave:
Dout $=$ \qquad
Closest standard diameter $=$ \qquad
Step 7. Use the chart to determine the rated power per belt for the diameter of the small sheave.
Rated Power per belt: \qquad

Step 8. Determine the number of belts required for this application:
Number of belts required: \qquad
Step 9. Calculate the range for an acceptable center distance, and choose a center distance that keeps the system as compact as possible.

Note: Recommended range of the Center Distance (C) $=$ Dout $<\mathrm{C}<3$ (Din + Dout)
Center distance range: \qquad
Chosen center distance $=$ \qquad
Step 10. Calculate the belt length: \qquad
Belt Length $\approx 2 C+\frac{\pi}{2}\left(D_{\text {in }}+D_{\text {out }}\right)$

Figure 1. Chart Source: BesTorq Belt Selection catalog: https://www.bestorq.com/crosssection.asp

STANDARD 5V TRANSMISSION HORSEPOWER RATINGS

HP RATINGS PER BELT FOR SMALL SHEAVE OD (IN)
Table 9

RPM	7.1	7.5	8.0	8.5	9.0	9.25	9.75	10.3	10.9	11.8	12.5	13.2	14.0	15.0	16.0
485	6.38	7.00	7.72	8.49	9.25	9.76	10.54	11.30	12.29	13.52	14.61	15.73	16.85	18.31	19.71
575	7.20	7.93	8.77	9.67	10.55	11.14	12.06	12.95	14.10	15.51	16.79	18.10	19.39	21.06	22.68
690	8.41	9.27	10.26	11.32	12.35	13.05	14.13	15.17	16.52	18.17	19.66	21.18	22.68	24.62	26.49
725	8.77	9.68	10.70	11.79	12.90	13.61	14.74	15.84	17.23	18.95	20.51	22.09	23.65	25.67	27.61
870	10.22	11.28	12.49	13.77	15.06	15.89	17.21	18.48	20.11	22.12	23.90	25.71	27.51	29.81	32.03
950	11.00	12.14	13.44	14.83	16.21	17.11	18.52	19.90	21.63	23.79	25.68	27.61	29.53	31.97	34.31
1160	12.93	14.29	15.83	17.46	19.08	20.14	21.79	23.39	25.40	27.94	30.06	32.21	34.39	37.11	39.71
1425	15.19	16.79	18.59	20.50	22.39	23.62	25.51	27.35	29.62	32.59	34.87	37.22	39.57	42.44	45.18
1750	17.66	19.52	21.60	23.79	25.95	27.32	29.43	31.48	33.94	37.34	39.55	41.81	44.22	46.93	49.49
2850	23.25	25.54	28.06	30.58	32.91	34.14	36.05	37.96							
3450	24.11	26.29	28.63	30.80											
50	0.83	0.90	0.99	1.08	1.18	1.24	1.33	1.43	1.55	1.71	1.84	1.97	2.11	2.28	2.47
60	0.98	1.06	1.17	1.28	1.40	1.45	1.58	1.69	1.83	2.01	2.16	2.33	2.50	2.71	2.91
70	1.11	1.22	1.35	1.47	1.60	1.68	1.81	1.94	2.11	2.32	2.50	2.68	2.87	3.12	3.36
80	1.26	1.38	1.51	1.67	1.81	1.90	2.04	2.20	2.39	2.62	2.82	3.04	3.25	3.53	3.80
90	1.41	1.53	1.69	1.84	2.01	2.11	2.28	2.44	2.65	2.92	3.15	3.38	3.63	3.94	4.24
100	1.54	1.69	1.85	2.03	2.22	2.32	2.51	2.68	2.92	3.21	3.46	3.73	3.99	4.34	4.67
150	2.22	2.43	2.67	2.94	3.19	3.36	3.63	3.88	4.23	4.65	5.01	5.41	5.79	6.29	6.78
200	2.86	3.13	3.46	3.80	4.13	4.35	4.70	5.04	5.49	6.04	6.53	7.02	7.53	8.19	8.81
250	3.48	3.82	4.21	4.63	5.05	5.32	5.75	6.16	6.71	7.38	7.99	8.61	9.22	10.03	10.80
300	4.10	4.49	4.96	5.45	5.94	6.26	6.77	7.27	7.91	8.70	9.42	10.14	10.88	11.83	12.73
350	4.69	5.15	5.68	6.25	6.81	7.19	7.77	8.35	9.08	9.99	10.81	11.66	12.49	13.59	14.64
400	5.26	5.78	6.39	7.03	7.67	8.09	8.75	9.40	10.23	11.26	12.19	13.13	14.07	15.31	16.49
450	5.83	6.41	7.08	7.79	8.51	8.98	9.72	10.44	11.36	12.50	13.52	14.58	15.63	16.99	18.30
500	6.38	7.03	7.76	8.56	9.34	9.85	10.66	11.45	12.47	13.72	14.85	16.01	17.15	18.64	20.09
550	6.93	7.63	8.43	9.30	10.15	10.72	11.59	12.46	13.56	14.92	16.15	17.41	18.65	20.27	21.82
600	7.47	8.23	9.10	10.02	10.94	11.56	12.51	13.45	14.63	16.10	17.43	18.77	20.11	21.85	23.52
650	7.99	8.82	9.75	10.74	11.74	12.40	13.41	14.41	15.69	17.26	18.67	20.12	21.55	23.41	25.20
700	8.51	9.38	10.38	11.45	12.52	13.21	14.30	15.36	16.73	18.40	19.90	21.44	22.96	24.92	26.82
750	9.03	9.96	11.02	12.15	13.27	14.01	15.18	16.29	17.75	19.52	21.10	22.72	24.33	26.41	28.40
800	9.54	10.51	11.63	12.83	14.02	14.81	16.03	17.22	18.74	20.62	22.29	23.99	25.67	27.85	29.94
850	10.03	11.06	12.24	13.51	14.76	15.59	16.88	18.13	19.72	21.69	23.44	25.22	26.99	29.26	31.43
900	10.52	11.60	12.84	14.17	15.49	16.36	17.71	19.02	20.69	22.76	24.58	26.42	28.28	30.63	32.89
950	11.00	12.14	13.44	14.83	16.21	17.11	18.52	19.90	21.63	23.79	25.68	27.61	29.53	31.97	34.31
10 nn	11	12	14 nt	15	1691	17 R6	1937	2075	22	2487	26 78	2875	74	\%	3567

Source: https://www.bandousa.com/html/pdfs/bu-143manual.pdf

