Projects

Projects

Solar

Solar energy remains an unexploited renewable energy source on Earth and beyond. In just one hour, our Earth receives enough energy in the form of sunlight to meet all of humanity’s energy needs for a whole year. At REL at UTC, we are working on three alternative solar-related projects to meet our future global energy needs at low cost using optically transparent and thermally insulating (OTTI) aerogel: 1) intermediate temperature solar thermal collector; 2) synthesis of low cost and strong OTTI aerogel; and 3) energy-efficient windows. In addition, our energy-efficient windows is closely related with UTC Solar Decathlon team.

Effect of Al2O3 ALD coating on thermal stability of silica aerogel [1]
A schematic image of solar thermal collector using transparent aerogel [2]
Affordable, strong and transparent aerogel [3] Our unpublished sample image is not shown here.
2023 Sustainability Decathlon a collegiate competition that challenges student teams to design and build highly efficient and innovative buildings

Related Publications (after joining UTC)

  • Yang, S.; Strobah, E.; Bierman, D.; Zhao, L.; Bhatia, B.; Wang, E. N. Effect of Al2O3 ALD coating on thermal stability of silica aerogel, Journal of Porous Materials. 2021, https://doi.org/10.1007/s10934-021-01155-4
  • Lin, Z.; Bhatia, B.; Zhang, L; Strobach, E.; Yang, S.; Wang, E., et. al., A Passive High-Temperature High-Pressure Solar Steam Generator for Medical Sterilization, Joule. 2020, 4 (12) 2733
  • Strobach, E.; Bhatia, B.; Yang, S.; Zhao, L.; Wang, E. N. High Temperature Stability of Transparent Silica Aerogels for Solar Thermal Applications. APL Mater. 2019, 7 (8), 081104. https://doi.org/10.1063/1.5109433
  • Zhao, L.; Bhatia, B.; Yang, S.; Strobach, E.; Weinstein, L. A.; Cooper, T. A.; Chen, G.; Wang, E. N. Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels. ACS Nano 2019. https://doi.org/10.1021/acsnano.9b02976
  • Zhao, L.; Strobach, E.; Bhatia, B.; Yang, S.; Leroy, A.; Zhang, L.; Wang, E. N. Theoretical and Experimental Investigation of Haze in Transparent Aerogels. Opt. Express 2019, 27 (4), A39–A50. https://doi.org/10.1364/OE.27.000A39.
  • Weinstein, L. A.; McEnaney, K.; Strobach, E.; Yang, S.; Bhatia, B.; Zhao, L.; Huang, Y.; Loomis, J.; Cao, F.; Boriskina, S. V.; et al. A Hybrid Electric and Thermal Solar Receiver. Joule 2018, 2 (5), 962–975. https://doi.org/10.1016/j.joule.2018.02.009

Water

Water scarcity and access to potable water are critical global challenges. At the REL, we are working on three alternative water-related projects to meet our future global water needs: 1) water harvester from ambient air; 2) computational study on vapor adsorption dynamics, and 3) novel additives to enhance mass and heat transfer.

Multiscale schema for high throughput topologically optimized studies.[4]
Working principle of the MOF-801-based water harvesting device [5]
Process steps for isolation of CO2 in ambient air. [6]

Related Publications (after joining UTC)

  • Colson, M.; Alvarez, L.; Soto, S. M.; Joo, S. H.; Li, K.; Lupini, A.; Nawaz, K.; Fomunung, I.; Onyango, M. A.; Danquah, M. K.; Owino, J.; Yang, S. A Novel Sustainable Process for Multilayer Graphene Synthesis Using CO2 from Ambient Air. Materials 2022, 15 (17), 5894. https://doi.org/10.3390/ma15175894
  • Gildernew, E.; Yang, S., Finite Element Modeling of Atmospheric Water Extraction by way of Highly Porous Adsorbents: a roadmap for solver construction with model factor sensitivity screening, Journal of Chemical Information and Modeling, 2022 August. https://doi.org/10.1021/acs.jcim.2c00683
  • Gildernew, E.; Tareq, S.; Yang, S. Three-Dimensional Graphene with Preserved Channeling as a Binder Additive for Zeolite 13X for Enhanced Thermal Conductivity, Vapor Transport, and Vapor Adsorption Loading Kinetics, Catalysts 2022, 12(3), 292; https://doi.org/10.3390/catal12030292
  • Kim, H.; Rao, S. R.; Kapustin, E. A.; Zhao, L.; Yang, S.; Yaghi, O. M.; Wang, E. N. Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates. Nat. Commun. 2018, 9 (1), 1191. https://doi.org/10.1038/s41467-018-03162-7
  • Wright, A. M.; Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. Precise Control of Pore Hydrophilicity Enabled by Post-Synthetic Cation Exchange in Metal–Organic Frameworks. Chem. Sci. 2018, 9 (15), 3856–3859. https://doi.org/10.1039/C8SC00112J